Open HSME menu
Subscribe Login

Home / Articles and Press Releases / Press Release / Protection Against Electric Arc Flash

CATEGORIES

  • Latest Issue
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil, and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips, and Falls
  • Wellbeing at work
  • Working at Height
  • Working rights

MORE

  • Press Release
  • Events
  • Videos
  • Webinars
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
Open HSME menu
Subscribe

Home / Articles and Press Releases / Press Release / Protection Against Electric Arc Flash

CATEGORIES

  • Latest Issue
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil, and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips, and Falls
  • Wellbeing at work
  • Working at Height
  • Working rights

MORE

  • Press Release
  • Events
  • Videos
  • Webinars
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Safety Signage
  • Heat and Flame
  • Article
  • Press Release
  • Air Pollution
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil, and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat
  • Lighting and ATEX
  • Noise Monitoring
  • Offshore Platform Safety
  • Personal Protective Equipment
  • Regulations & Legislations
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips, and Falls
  • Wellbeing at work
  • Working at Height
  • Working rights

Press Release

Protection Against Electric Arc Flash

By IST

| Read Bio

Published: December 08th, 2022

Share this article

Electric arc originates from gas ionization, electrodes at different potentials are the conductive electrical connection between different phases. Electric arc can occur due to a technical or operator error. While galvanic contacts are required to trigger the electric arc in low-voltage areas and in high-voltage areas, live parts may be caused by an inconvenience in the relative distance.

An electric arc explosion is a very short-term electricity flow or discharge in the form of heat and light through air between two conductors that do not touch each other along an unintended path.

IEEE Std 100-1988 defines electric arc as a discharge of electricity through a gas, normally characterized by a voltage drop in the immediate vicinity of the cathode approximately equal to the ionization potential of the gas and flashover as:

1) (general) a disruptive discharge through air around or over the surface of solid or liquid insulation, between parts of different potential or polarity, produced by the application of voltage wherein the breakdown path becomes sufficiently ionized to maintain an electric arc.

2) (high voltage ac cable termination) A disruptive discharge around or over the surface of an insulating member, between parts of different potential or polarity, produced by the application of voltage wherein the breakdown path becomes sufficiently ionized to maintain an electric arc.

3) (high voltage testing) Term used when a disruptive discharge occurs over the surface of a solid dielectric in a gaseous or liquid medium.

Air is not a good conductor, most of the current flows are through post-arc vapor (usually copper and aluminum vapor) and ionized particles in the air.

Protectıon Against Electric Arc Flash

Effects of electric arc

Depending on the power and burning time of electric arc, different physical effects can be seen due to the high temperature. Electric arc energy is discharged in multiple ways, such as electrical, thermal, mechanical, photonic or luminous energy. Mechanical energy usually occurs in the form of explosions. Many various factors affect the energy created by electric arc.

The arcs can exceed over 10,000 °F and electrical fires are likely outcome of these arc flashes. The material in the center of the arc evaporates and causes a conductive connection between the electrodes. The fact that the tip of a burning cigarette is 580 °C when not smoked, 700 °C when smoking, and the surface temperature of the sun 6,000 °C reveals how dangerous arc explosions are. The temperature effect of an arc blast with a diameter of 20 cm at a distance of 50 cm is approximately 1300 °C.

It is very dangerous for the eyes as it may cause blindness. If the energy is too high, it may cause ultraviolet burns. For protection, arc flash protective face shields or hoods with visors that are dark enough not to damage the eyes in the event of a blast and certified according to the relevant standards should be used.

Electric arc related hazards

There are many hazards that may be occured from an arc flash such as thermal burns, burst pressure wave injury, hearing loss, harmful electromagnetic emissions, emission of high toxic gases, shrapnel injury (blast).

An arc flash can cause fatal physical injuries. Severe trauma from massive burns can cause a general systemic failure. Burnt internal organs can shut down—causing death. Thus, the more critical the organ that is burnt, the higher the possibility of death. The pressure front from the blast can cause severe injury to the lungs, called blast-lung, resulting in death. Heart failure can result from fibrillation and/or paralysis.

Some of the standards of PPEs for protection against electric arc

IEC 61482 standard has been published by IEC in order to determine the test methods of the materials and heat and flame resistant protective clothings to be used by workers who may expose to electric arc. This standard is a mandatory standard for certification of the product and obtaining the CE mark and includes two different test methods as explained below, it covers the performance values of the fabric and the ergonomic features of the suit:

IEC 61482 1-1 (Protective clothing against the thermal hazards of an electric arc – Part 1-1: Test methods – Method 1: Determination of the arc rating (ELIM, ATPV and/or EBT) of clothing materials and of protective clothing using an open arc): This is a standard specifies test method procedures to determine the arc rating of flame resistant clothing materials and garments or assemblies of garments (layer system eg.) intended for use in clothing for workers if there is an electric arc hazard. An open arc under controlled laboratory conditions is used to determine the values of ATPV or EBT of materials, garments or assemblies of garments. The user can classify the arc protective performance into arc rating protection levels based on ATPV and/or EBT values which correspond best to the different hazards and risks levels that can result from the user’s risk analysis.

ATPV : (Arc Thermal Performance Value) This value is measured in calories per square centimeter and represents the maximum performance capability for arc flash protection of a particular suit or fabric. It is the highest thermal accident energy that will prevent the user from being exposed to a second degree burn at 50% rate. It expresses the maximum incident thermal energy per surface area, in units cal/cm2, that the protective suit can withstand the fabric before second degree burn occurs.

The higher the ATPV value of the product, the more energy will be required for a 2nd degree burn to occur. So the case energy resistance of the material will be high. In other words, the higher the ATPV value of a protective suit in cal/cm2, the higher the level of protection. Which ATPV protection level of a protective equipment is needed in a job should be determined as a result of an arc flash risk assessment.

EBT : (Energy Break-open Threshold) The incident energy on a material that results in a 50% probability of breakopen, in units cal/cm2. It represents the highest incident energy exposed in the fabric of the protective suit, causing 50% probability to break open the fabric. Holes in the fabric caused by breaking open cause heat or flame to enter inside of the suit. Breakopen is defined as any open area at least 1.6 cm². The fabric did not overheat to the point that caused the burn reading on the sensor and there is only a very small hole in it.

The arc rating of a protective suit’s fabric is equal to ATPV or EBT. ATPV is 50% probability of second degree burn in the 8kA arc test on a flat panel. EBT is the 50% probability of a one inch crack in the material.

Protectıon Against Electric Arc Flash

IEC 61482 1-2 Protective clothing against the thermal hazards of an electric arc – Part 1-2: Test methods – Method 2: Determination of arc protection class of material and clothing by using a constrained and directed arc (box test): This is a standard specifies procedures to test material and garments intended for use in heat and flame resistant clothing for workers if there is an electric arc hazard. A directed and constrained electric arc in a test circuit is used to classify material and clothing in two defined arc protection classes. This international standard is not dedicated toward measuring the arc rating values (ATPV or EBT). Procedures determining these arc rating values are prescribed in IEC 61482-1-1, using an open arc for testing. Other effects than the thermal effects of an electric arc like noise, light emissions, pressure rise, hot oil, electric shock, the consequences of physical and mental shock or toxic influences are not covered by this standard.

It has been published to determine the safety requirements for the low and high protection classes specified in the standard for the whole clothing and the fabric layer system, and to determine whether protection is provided against the heat where the electric arc occurs. An electric arc for a duration of 500 ms is applied on the test sample from a distance of 30 mm. With the help of the calorimeter placed behind the protective clothing and/or fabric layer system, the curve formed by combining the points on a graph of the temperature increases occurring after the arc flash is drawn.

It is widely used in Europe and the arc rating is not specified in ATPV as mentioned above. Instead, products are classified as Class 1 or Class 2. Samples are exposed to 4 kA for Class 1 (158 kJ) and 7 kA for Class 2 (318 kJ) for 0.5 seconds from a distance of 300 mm. These kilojoule values define the intensity of the electric arc flash created in the laboratory. It is proved that a PPE that has passed the box test successfully will prevent second degree burns if these kilojoules values are not exceeded.

As a result of the test, melting is not allowed, burning should be 5 seconds or less. The hole can be seen in the outer layer, but is allowed for a maximum of 0.5 cm in the inner layer.

Protectıon Against Electric Arc Flash

Arc flash protective clothings (arc rated suits)

Preventing clothing and underwear from ignition often ensures survival. Limiting burns to a small surface area provides better results. Prevention of all burns is of course the best option, however it is also very important to survive from an accident with non-fatal burns of various sizes. Protective equipments must be used for this reason.

Clothings made of acetate, nylon, silk or their mixture should never be worn in hazardous workplaces. In environments where there is a risk of burning, clothings and/or underwears made of flame retardant fabrics should be used. Flame retardant fabrics are divided into two according to the production technique.

Finished fabrics with chemical FR treatment

Fabrics, such as cotton, cotton / polyester blends, cotton / polyamide blends, whose flame is delayed by various chemical treatments, do not lose their flame retardant properties until a certain number of washes. When washing in accordance with the manufacturer’s instructions, there are flame resistant fabrics up to 30-50-100-150 washes, depending on the process applied.

Inherently flame retardant fabrics

Fabrics produced from various fibers such as metaaramid or paraaramid, viscose FR are inherently flame retardant. Even if washed many times, they never lose their flame-resistant properties. However, they are technical fabrics with higher cost compared to finished fabrics.

All of our ELECTPRO® series electric arc flash protective clothings produced by our company, IST Safety Ltd, are manufactured in accordance with the latest (EU) 2016/425 PPE regulation and have EU type examination certificates and passed the relevant tests of IEC 61482 standards.

ELECTPRO® G2L ULTRASOFT 900 High Level Electric Arc Flash Protective Suit protects the user’s body against the negative effects of electric arc such as heat, flame, molten particles. The protective hood is certified according to GS ET 29 standard and carries the CE mark. The visor of the hood is dark enough to protect the eyes from flash. Protective suit consists of three parts as jacket, bib trousers and hood with visor and all of them are made double-layered. The suit is Class 2 (7 kA) according to IEC 61482 1-2 standard. According to the IEC 61482 1-1 standard, the ATPV value of the suit and the whole layer system is 63 cal / cm2.

Share this article

ABOUT THE AUTHOR

IST

Since 1979, we produce equipments for; OCCUPATIONAL HEALTH AND SAFETY, FIRST AID & CIVIL DEFENSE and FIRE & CBRN & PERSONAL PROTECTION.
Our headquarters and factory are located in Ankara. With our network of distributors spread all over the country and worldwide we distribute our best and high quality service to customers in the shortest time. Our company has TS EN ISO 9001 Quality Certificate. All our products are certified according to international standards. With the high quality products we manufacture, our export sales increase day by day.

Visit Website

POPULAR POSTS BY IST

Protective Clothings Against Molten Metal Splashes Used İn Foundries

Press Release

Protective Clothings Against Molten Metal Splashes Used in Foundries

Protectıon Against Electric Arc Flash

Press Release

Protection Against Electric Arc Flash

Press Release

Next Generatıon Emergency Showers and Eye/Face Washes By IST Safety Ltd

IST Thumbnail

Article

Protection Against Electric Arc Hazards

Article

New PPE Regulation (EU) 2016/425

Press Release

New Generation Emergency Showers and Eye/Face Washes By IST Safety Limited

Get email updates

Sign up for the HSME newsletter

Keep up-to-date through the power of email with the region's only industrial health and safety magazine - delivering the latest news and products to satisfy all your occupational safety needs.
  • This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Advertisement

SOCIAL MEDIA

HSME on Facebook

https://www.facebook.com/HSMEMagazine/

Advertisement

SOCIAL MEDIA

HSME on Twitter

hsmemagazine HSME Magazine @hsmemagazine ·
25 Jan

DFB is designed for use in high-end manufacturing environments, including food and pharmaceutical manufacturing but can also be applied in wider industry settings.

Read the latest exciting news from @airbench today!
https://www.hsmemagazine.com/press-release/new-downflow-booth-from-airbench-ltd/

#hsmemagazine #AirBench #DownFlowBooth

Reply on Twitter 1618277902268915719 Retweet on Twitter 1618277902268915719 Like on Twitter 1618277902268915719 Twitter 1618277902268915719

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

Keep up-to-date through the power of email with the region’s only industrial health and safety magazine – delivering the latest news and products to satisfy all your occupational safety needs.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO HSME MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how occupational safety has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of HSME, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the best health & safety articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About HSME
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to HSME

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT